Variations in airways impedance during respiratory cycle derived from combined measurements of input and transfer impedances.

نویسندگان

  • W Tomalak
  • R Peslin
  • C Duvivier
چکیده

Simultaneous measurement of input (Zin) and transfer impedances (Ztr) allows separation of airway and tissue properties at a single frequency, without making assumptions concerning the structure of the two compartments. This approach offers the possibility of studying the variation in airway impedance (Zaw) during the respiratory cycle. Zin and Ztr were measured at frequencies of 10, 20, 30 and 40 Hz in eight healthy subjects to study the variations in Zaw according to a modification of the Rohrer's equation: X=K1+K2(V'ao)-K3V, where V is volume and V'ao the flow at the airway opening. The results showed that Zaw could be modelled as a simple resistance-inertance pathway. Variations in airway resistance (Raw) with flow were greater during expiration than during inspiration with K2 values varying from 0.76-0.90 hPa x s2 x L(-2) during inspiration and 0.84-1.47 hPa x s2 x L(-2) during expiration, independently of frequency. Raw was negative volume dependent; it decreased more with increasing volume during inspiration than during expiration. Airways inertance calculated from the imaginary part of Zaw also underwent systematic variations during the respiratory cycle, but, in contrast to Raw, flow dependence was negative during both phases. In conclusion, the approach used in this study allows flow and volume dependencies of airways mechanical properties to be studied and can also provide indices of airway patency independently of flow, which is of great potential interest for studying variations in airway resistance during bronchomotor tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Session 3aSC: Speech Communication 3aSC8. Source-filter interaction in the opposite direction: subglottal coupling and the influ- ence of vocal fold mechanics on vowel spectra during the closed phase

Studies of speech source-filter interaction usually investigate the effect of the speech transfer function (loading) on vocal fold vibration and the voice source. In this study we explore how vocal fold mechanics affect the transfer function throughout the glottal cycle, with emphasis on the closed phase. Coupling between the subglottal and supraglottal airways is modulated by the laryngeal imp...

متن کامل

Effects of posture and bronchoconstriction on low-frequency input and transfer impedances in humans.

We simultaneously evaluated the mechanical response of the total respiratory system, lung, and chest wall to changes in posture and to bronchoconstriction. We synthesized the optimal ventilation waveform (OVW) approach, which simultaneously provides ventilation and multifrequency forcing, with optoelectronic plethysmography (OEP) to measure chest wall flow globally and locally. We applied an OV...

متن کامل

Analysing Differences between the Input Impedances of Five Clarinets of Different Makes

Physical differences, such as variations in geometry, between musical wind instruments of a given type generally lead to differences in their resonance properties and, consequently, in their playing characteristics. Input impedance measurements provide information about both the strengths and frequencies of the instrument’s air column resonances. In most playing situations, it is these air colu...

متن کامل

A method for calibration of bone driver transducers to measure the mastoid impedance.

When using bone vibrator transducers for clinical measurements, the transfer of energy from the bone driver depends on the impedance match between the driver and the load (human mastoid or otherwise) to which the driver will be applied. Current clinical calibration methods are incapable of quantifying this impedance mismatch, hence they fail to account for inter-subject variations of the energy...

متن کامل

Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method

A two-microphone transfer function (TMTF) method is adapted to a numerical framework to compute the radiation and input impedances of three-dimensional vocal tracts of elliptical cross-section. In its simplest version, the TMTF method only requires measuring the acoustic pressure at two points in an impedance duct and the postprocessing of the corresponding transfer function. However, some cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 1998